Algebraic cycles and Todorov surfaces

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A note on Todorov surfaces

Let S be a Todorov surface, i.e., a minimal smooth surface of general type with q = 0 and pg = 1 having an involution i such that S/i is birational to a K3 surface and such that the bicanonical map of S is composed with i. The main result of this paper is that, if P is the minimal smooth model of S/i, then P is the minimal desingularization of a double cover of P ramified over two cubics. Furth...

متن کامل

An algebraic proof of Bogomolov-Tian-Todorov theorem

We give a completely algebraic proof of the Bogomolov-Tian-Todorov theorem. More precisely, we shall prove that if X is a smooth projective variety with trivial canonical bundle defined over an algebraically closed field of characteristic 0, then the L∞-algebra governing infinitesimal deformations of X is quasi-isomorphic to an abelian differential graded Lie algebra.

متن کامل

Algebraic Cycles

This article is based on a talk given by V. Srinivas at the MRI, Allahabad. We give an account of the theory of algebraic cycles where the stress is not on the spate of conjectures (Hodge, Tate, Grothendieck, Bloch-Beilinson, etc.) that define the picture of this theory today, but rather on the key examples that refined and delineated this picture. Some of the deepest aspects of the theory of a...

متن کامل

Algebraic Cycles and Connes Periodicity

We apply the classical technique on cyclic objects of Alain Connes to various objects, in particular to the higher Chow complex of S. Bloch to prove a Connes periodicity long exact sequence involving motivic cohomology groups. The Cyclic higher Chow groups and the Connes higher Chow groups of a variety are defined in the process and various properties of them are deduced from the known properti...

متن کامل

Quaternionic Algebraic Cycles and Reality

In this paper we compute the equivariant homotopy type of spaces of algebraic cycles on real Brauer-Severi varieties, under the action of the Galois group Gal(C/R). Appropriate stabilizations of these spaces yield two equivariant spectra. The first one classifies Dupont/Seymour’s quaternionic K-theory, and the other one classifies and equivariant cohomology theory Z∗(−) which is a natural recip...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Kyoto Journal of Mathematics

سال: 2018

ISSN: 2156-2261

DOI: 10.1215/21562261-2017-0027